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Abstract--The kinetics of deoxygenation of [MoO2(Sap)EtOH] (Sap 2- = N-salicylidene-2-aminophenolate 
dianion) by thionyl chloride have been studied in acetonitrile and a mixture of tetrahydrofuran and acetonitrile 
(v/v = 9 : 1) by spectrophotometry. Under the conditions [MoO2(Sap)EtOH] << [SOC12], the reaction of for- 
mation of the product MoO(Sap)C12 consists of two consecutive steps. The pseudo-first-order rate constants 
of the first-step reaction depended on [SOC12]~/2 and were significantly affected by the dielectric constant of 
solvent used, whereas those of the second-step reaction were independent of [8OC12]. A mechanism is proposed 
for the deoxygenation, where the reactant reacted initially with MoO2(Sap)EtOH is not SOC12, but SOCI + or 
C1 ions. © 1997 Elsevier Science Ltd 
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Much of the coordination chemistry of Mo w is cen- 
tered on classes of complexes containing the cis-dioxo 
MoO 2+ cation, but species containing the oxo ligand 
MoO 4+ are rarely found. Examples of cases where the 
unit is found include seven-coordinate peroxo and 
persulfido complexes, MoO(X2)L 2+ (X = O ,  S), 
seven-coordinate dithiocarbamate complexes, 
MoO(dtc)~-, and five-coordinate oxyhalides, MoOX4 
[1]. To our knowledge, the only example of a mono- 
n u c l e a r  M o O  4+ center with a coordination number of 
six is MoO(cat)(Sap)(cat = catecholate dianion) [2], 
where the terminal oxo ligand and the central nitrogen 
donor of the Sap ligand occupy opposite vertices of 
the octahedron. 

In this study the kinetics of reaction of MoO2- 
(Sap)EtOH with SOC12 have been studied in aceto- 
nitrile and a mixture of tetrahydrofuran (THF) and 
acetonitrile (v/v = 9 : 1). The product of the reaction 
is a six-coordinate oxomolybdeum(VI) complex, as 
expressed by the equation. 

*Authors to whom correspondence should be addressed. 

MoO2 (Sap)EtOH + 80C12 , 

MoO(Sap)C12 +SO2 + E t O H  (1) 

The deoxygenation of oxovanadium(IV) complexes 
with polydentate ligands by SOC12 readily yielded 
trans-dichlorovanadium(IV) complexes [3-5]. Flori- 
ani and co-workers assumed that an acid-base 
adduct between the complexes and SOC12 was formed 
as an intermediate [3]. Salem and Amer studied the 
kinetics of the deoxygenation in N,N-dimethyl- 
formamide and reported that the reaction obeys 
second-order kinetics [6]. 

EXPERIMENTAL 

Materials 

The complex [MoO2(Sap)EtOH] was synthesized 
from MoO2(acetylacetonate)2 according to the 
method described in the literature [7]. Solvents were 
purified by distillation under dry dinitrogen before 
use: THF(Kanto  Chemical Co.), n-hexane (Kanto) 
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and diethyl ether (Kanto) from sodium/benzo- 
phenone; acetonitrile from calcium hydride. Thionyl 
choride (Kanto) was distilled before use. 

The complex MoO(Sap)C12 was prepared as fol- 
t~ 

lows: A 3.85 g (0.01 mol) sample of  MoO2(Sap)EtOH ~ 0,6 
was dissolved in 100 cm 3 T H F  and the solution was a~ 
filtered. To the filtrate was added 20 cm 3 of  a T H F  < 
solution containing 2~16 cm 3 (0.03 mol) of  thionyl 
chloride. The color of  the reaction mixture turned 
from orange to deep purple. The purple solution was 
concentrated to 20 cm 3 and then diluted with 30 cm 3 
hexane. The product was filtered, washed with diethyl 
ether and dried in vacuo .  Reactions were carried out 1.2 
under of  dry dinitrogen using the standard Schlenk 
technique. The yield was > 85%. Found: C, 39.6; H, 
2.3; N, 3.8. Calc. for Cz3HgNO~ClzMo: C, 39.6; H, 2.3; o 
N, 3.6%. The IR spectrum of the complex exhibited 

band at 942 cm-% which is "~ 0.6 a strong absorption 
characteristic of  the M o z O  stretching in the M o O  4+ '~ 
group [1,2]. < 

K i n e t i c  m e a s u r e m e n t s  

Pseudo-first-order conditions ([MoO2(Sap)EtOH] 
[SOC12]) were used throughout  the study of  the 
reaction expressed by eq. (1) and verified by the results 
that pseudo-first-order rate constants kobs were inde- 
pendent of  [MoO2(Sap)EtOH] (1-5 x 10 -4 M).  The 
constants were determined from the change ofabsorb-  
ance with a lapse of  time using Union  Giken RA 401 
stopped-flow or Shimadzu UV-160A spectro- 
photometers with thermostated cell compartments.  
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Fig. 1. Spectral changes in the reaction of 1.89 x 10 4 M 
MoO2(Sap)EtOH with 0.0445 M SOC12 in a mixture of THF 
and CH3CN (v/v = 9: 1) at 15.4°C. Spectra in the upper 
figure were recorded at 40 s intervals, whereas spectra in 
the lower figure were recorded at 600 s intervals after the 

measurement of spectra in the upper figure. 

R E S U L T S  AND D I S C U S S I O N  

Figure 1 shows spectral changes in the reaction of  
MoO2(Sap)EtOH with SOC12 in a mixture of  T H F  1.4 
and CH3CN (v/v = 9: 1). As the reaction proceeded, 
the absorbance of  the broad band at ca  600 nm 
increased at high rate and then decreased at low rate. 1.z 
The UV-vis  electronic absorption spectrum measured 
at the end point of  the reaction was the same as that 

1.0 of  MoO(Sap)C12. Therefore, the reaction (1) is con- 
sidered to consist of  two consecutive steps, whose 
pseudo-first-order rate constants are kj.obs and k2.obs: o 0.8 

MoO2 (Sap)EtOH (A) , Intermediate (B) 

, MoO(Sap)C12 (C) (2) 0.6 

Absorbance measurements were taken at 600 nm as 
0.4 

a function of  time. A typical trace is illustrated in Fig. 
2 where the absorbance rapidly rises and then slowly 
declines. The traces were analyzed by means of  a non- 
linear least-squares method, where kl,ob s '/£2 obs and the 
molar  extinction coefficient (e~nt) of  the intermediate 
were used as unknown parameters to fit the following 
equation [8]. 

A t -- Af = ~ exp (--  k,.obs/) -k- fl exp (--  kz,obst ) (3) 

I I I I 
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Fig. 2. Change of absorbance at 600 nm as a function of time 
for the reaction of 1.89 x 10 -4 M MoO2(Sap)EtOH with 
0.0445 M SOC% in a mixture of THF and CH3CN 
(v/v = 9:1) at 15.4°C. The solid line is that given by non- 

linear least-squares fit based on eq. (3). 
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w h e r e  A t and Af represent the absorbances at times t I 
and infinity, respectively, and c~ and fl are: 

4 
c~ = [A]o { (ei,, - eA)k,.obs + (CA -- ec)kz,ob~}/ 

(k2.ob~ -- k,,ob~) 

fl = [A]0 (ac--'gint)k,,obs/(kZ,obs--k,,obs), (4) 3 

where a's are molar extinction coefficients and [A]0 - r  
is the initial concentration of MoOz(Sap)EtOH. As ~'o 
shown in Fig. 2, calculated values agree well with the -~ ~3 O 
observed trace giving the best-fit values for k~,obs, k2,ob~ ~" 2 
and g~n,. Under  the condit ion in Fig. 2, these values 
were determined to be as follows: kl,ob s = 8.60 × 10 -3 
S I, k2,ob s = 6.71 x 10 4s-1 and emt = 7.84× 103M -I A 
cm-  ~. It is to be noted that the mathematical analysis 1 
for such a consecutive reaction as eq. (2) yields an G 
alternative solution with a different set of parameters, 
k~,obs, k~,ob s and e~,,, where k~,ob s =k2,obs, k2,obs-~ 
k~,obs, e~,t = eA + kLobs(eint- ~A)/kz,obs [8]. For  example, 0 I 
another set of  solution for the condition of Fig. 2 is 0.0 0.S 
k',,ob = 6 . 7 1 × 1 0 - 4 s  ', k~ .obs=8.60xl0  3s - l , e~ ,  
= 1.04 x 105 M -  ~ cm -  ~. However, the latter set can 
be ruled out by the following reasoning. The larger 
rate constants were proportional to  [SOC12] t/z, while 
the smaller rate constants were independent of [SOC12] 
(see below). The maximum absorbance at 600nm 
increased with increasing [SOC12]. These results indi- 
cate that the rate c o n s t a n t  (kLobs) of the first step is 
larger than that (k2.ob~) of the second step. 

The values of kLobs and k2.obs w e r e  determined with 
changing [SOC12] at different temperatures and are 
plotted against [SOC12] ~/2 and [SOC12] in Figs 3 and 4, 
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Fig. 3. Plots of kl.ob s t)S [SOCl2] I/2 for the reaction of MoO2(S- 
ap)EtOH with SOC12 in a mixture of THF and CH3CN 
(v/v = 9:1) at various temperatures: (D, 15.4; A, 20.3; O, 

25.4; [--1, 30.0°C. 
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Fig. 4. Plots of kz,ob~ vs [SOClz] for the reaction of MoO2(S- 
ap)EtOH with SOC12 in a mixture of THF and CH3CN 

(v/v = 9: 1) at various temperatures. 

respectively. As shown in figures, the k~.obs values vary 
linearly with [SOC12] ~/2, while the kz.ob s values are inde- 
pendent of [SOC12]. Nonzero intercepts of x axis in 
Fig. 3 may be attributed to the loss of SOCI2 by its fast 
reaction with H20 (SOC12+H20 ,SO2+2HC1), 
the latter being added unintentionally to the reaction 
mixture. 

The results obtained in this study might well ex- 
plained by the mechanism given in Fig. 5. The depen- 
dence of kt,obs o n  [SOCl2] I/2 indicates that the reactant 
reacted initially with MoO2(Sap)EtOH is not SOC12, 
but SOC1 + or CI ions, i.e. products of self-ionization 
equilibrium of SOCI2(SOC12 = SOC1 + +C1- )  [9]. If 
the equilibrium constant Kd of the reaction is very 
small, [SOCI +] = [C1-] = (Kd[SOC12]) 1'2. Therefore, 
the rate of the first-step reaction varies linearly with 
[SOCI2] I/2. 

According to the mechanism, EtOH in M o O  2 (Sap) 
EtOH is rapidly substituted for the C1 ion and then 
the SOCI + ion attacks a terminal oxo ligand t r a n s  to 
CI- ,  leading to the formation of an intermediate. If 
the second-order rate constant of the latter reaction is 
k2, the slopes in Fig. 3 correspond to  k2K~/2. The 
values are listed in Table 1, along with activation 
parameters. 

The fact that the k2,ob s values are independent of 
[SOC12] may be explained by the intramolecular 
rearrangement where SO2 is evolved. The structure of 
the final product MoO(Sap)C12 is assumed to be the 
same as that of the corresponding monooxo- 
molybdeum(V) [MoO(Sap)Cl2] , where the planar 
tridentate Schiff base ligand (Sap) occupies mer- 
idional positions with N atom t r a n s  to the terminal 



2172 

o 

(/oll  o 
M o / / /  

t 0 

I 

EtOH 

( A )  

C1- 

- EtOH 

W.-S.  J u n g  et al. 

0 
II 

f S ~  
O ~ ]  1- O Cl 

1 1 / . o  o I o (/o  oc, +. (/ 
N 4jo ~__~o 

C1 C1 
Intermediate(B) 

- s o  2 

O C1 

olj c ? l  
/i Mo, ° / Mo ? 

(c) 

Fig. 5. Possible mechanism for the reaction of MoO2(Sap)EtOH with SOC12: ONO represents N-salicylidene-2-amino- 
phenolate dianion. 

Table 1. Kinetic data for the reaction of MoO2(Sap)EtOH by SOCl 2 in CH3CN and a 
mixture of  T H F  and CH3CN (v/v = 9: 1) 

(a) in a mixture of  T H F  and CH3CN (v/v = 9: 1) 

Temperature (°C) k2Kd ','2~ ( M - '  s L) k2,ob/' (s ') 

15.4 5.19 x 10 2 6.44 x 10-4 
20.3 6 .41x10  2 1 .21x10 -3 
25.4 7.31 × 10 -2 2.15 x 10 -3 
30.0 7 .99x10  2 3 .66x10  -3 

°AH++ = 18.8 + 2.5 kJ mo1-1, AS+ + = - 2 0 4  + 9 J K -~ mol '. 
bAH++ = 83.6 + 0.6 kJ mol t, AS++ = - 15.8 + 1.9 J K -t  mo1-1. 

(b) in CH3CN 

Temperature ( 'C) k2Kd L/2~ (M ' s i) Temperature (¢C) k2,ob~ h (S - I )  

17.2 22.9 25.0 1.19 x 10 -3 
22.0 25.8 30.0 2.06 x 10 3 
27.1 27.0 35.0 3.56 x 10 -3 
32.0 29.4 40.0 6.09 x 10 3 

~ A H { = 9 . 5 6 +  1 .56kJmol - I ,  A S + + = - - 1 8 6 _ + 6 J K  Imol  i. 
hAHn: = 82.0 + 0.6 kJ mol t, AS++ = - 2 5 . 9  + 1.9 J K -t  mol h. 

oxo  g r o u p  a n d  two  C1-  ions  a re  c/s to the  oxo  g r o u p  

[101. 
T h e  d e o x y g e n a t i o n  o f  M o O 2 ( S a p ) E t O H  by  SOC12 

was  a lso  i nves t i ga t ed  in C H a C N .  T h e  ra te  o f  the  first-  
s tep r eac t i on  was  so  fas t  t h a t  the  r e ac t i on  was  m o n i -  

t o r ed  o n  the  s t o p p e d - f l o w  s p e c t r o p h o t o m e t e r .  T h e  

c h a n g e  in a b s o r b a n c e  a t  600 n m  wi th  t ime  was  f i t ted 

to a s i n g l e - e x p o n e n t i a l  f u n c t i o n  a n d  the  ra te  c o n s t a n t s  

kl,ob s w e r e  ob t a ined .  T h e  p lo t s  o f  kl,obs a g a i n s t  
[SOC12] ~/2 were  l inear  a n d  t he  s lopes  (k2 K~/2) are  l is ted 
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Fig. 6. Plots of k2,ot, s v s  [SOC12] for the reaction of M o O  2 
(Sap)EtOH with SOC12 in C H 3 C N  at various temperatures. 

in Table 1, along with activation parameters. The 
reason why k].ob s is much larger in CH3CN than in a 
mixture of THF and CH3CN is that the dielectric 
constant of CH3CN is larger than that of the mixed 
solvent. The equilibrium constants Kd of self-ion- 
ization of SOC12 are expected to increase with increas- 
ing the dielectric constant of the medium because the 
neutral molecule of SOC12 ionizes to oppositely char- 
ged ions [11]. The enthalpies of activation for kl,ob s 

in both solvents are small, suggesting that the self- 
ionization of SOC12 is exothermic. However, for quan- 
titative evaluation of the enthalpy of activation the 
dependence of the dielectric constant on temperature 
must be taken into account: the dielectric constant 
tends to decrease with increasing temperature [12]. 

The second-step reaction in CH3CN was monitored 
on the U V v i s  spectrophotometer and the rate con- 
stants kz.ob s w e r e  obtained from the single-exponential 
fitting of the change in absobance with time. As shown 
in Fig. 6, the rate constants decrease very gradually 
with increasing [SOC12] in its low region, but tend to 
approach limiting values in its high region. The rate 
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constants at the highest [SOC12] measured were taken 
as the limiting values and are listed in Table 1. Con- 
sidering that the second-step reaction is intra- 
molecular, it seems reasonable that the differences in 
the k2,ob s values and activation parameters are small 
between both solvents. 

The mechanism of Fig. 5 is similar to that proposed 
for the formation of gem-dichlorides from carbonyl 
compounds by treatment with SOCl2 [13] or PCI5 [14] 
in that substrates are not initially attacked by SOC12 
or PC15, but by its separated charged species. 
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